
Journal of Statistical Physics, Vol. 46, Nos. 1/2, 1987 

Quasistationary Distributions for 
Autocatalytic Reactions 

R. W. Parsons l and P. K. Pollett  2 

Received January 14, 1986," revision received September 2, 1986 

We provide simple conditions for the existence of quasistationary distributions 
that can be used to describe the long-term behaviour of open autocatalytic reac- 
tion systems. We illustrate with reference to a particular example that the 
quasistationary distribution is close to the usual stationary diffusion 
approximation. 
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1. I N T R O D U C T I O N  

We shall consider a stochastic model  for autocatalyt ic  reaction systems that  

possess two t ime- independent  steady states, one stable and the other, 

corresponding to the exhaust ion of a part icular  species, unstable. Two 
c o m m o n  examples considered previously are (1 5) 

A + X  *x ~ 2X 

2X ~2 ~ B 
(1) 

and(6 9) 

kl 
A + X  , ~ 2X 

k - I  

X - . 2  ' B  

(2) 
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each system being open with respect to both A and B. We shall suppose 
that the number of molecules of species X can be adequately described by a 
Markov process (X(t), t ~> 0) whose state space consists of an absorbing 
state 0 and an irreducible transient class C =  { 1, 2, 3,...}. Unless, excep- 
tionally, J((t) becomes unboundedly large, eventual absorption is certain 
and ultimately all the probability is concentrated at the absorbing state. 
However, this state is (macroscopically) unstable. The explanation of this 
apparent anomaly lies in the fact that there are evidently two time scales in 
operation. First, after a relatively short time, the system relaxes to the 
stable state, and then, after a very much longer period, it eventually 
evanesces. (7,10) 

Several authors (7 9) have used the notion of a quasistationary dis- 
tribution to describe the fluctuations about the stable steady state, but they 
limit themselves to a finite-state birth and death (B &D)  process for- 
mulation that is only appropriate for dealing with closed systems in which 
the number of X molecules can change by at most 1 during a reaction. In 
this paper we extend their results to denumerably infinite state processes 
that involve jump sizes greater than 1. In addition, we show that the 
quasistationary distribution is close to the stationary diffusion 
approximation of Kurtz (11'12~ and Barbour. (13) 

2. Q U A S I S T A T I O N A R Y  D I S T R I B U T I O N S  

For simplicity let us suppose that we are dealing with a system in 
which the number of species X cannot grow unboundedly. Under this 
assumption the two most common quasistationary distributions used to 
describe the long-term behavior of (X(t), t>~O) are the stationary con- 
ditional quasistationary distribution 

lim P{X(t)=jIX(O)=i,X(t)r i , j~C (3) 

and the doubly limiting conditional quasistattonary distribution 

tlimoo~ ,~lim P{X(t)=j]X(O)=i,X(s+t)vsO}, i , j~C (4) 

Each describes the limiting probability that the process is in state j given 
that (i) absorption has not occurred or (ii) will not occur in the distant 
future. Under certain conditions (15'~6) the limits (3) and (4) each define a 
proper probability distribution H = (~j, j ~ C) that does not depend on the 
starting state i. However, these conditions are at least partly expressed in 
terms of the transition probabilities, which are seldom available. If C is 
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finite, then the quasistationary distributions can be determined by con- 
sidering the eigenvector equations 

ujqj~=-#uk, ~ qk:vj=-#vk, k~C (5) 
j c  C j ~  C 

where Q = (q/~,,j, k>~O) is the q-matrix of transition rates and #j>0; in 
accordance with convention the diagonal element qjj is set to - q  j, where 
qj = ~ ;  <j qjk is the rate out of state j. It is always possible to find positive 
solutions u =  (UJ, J e  C) and v = (vj, j e  C) corresponding to the eigenvalue 
- 2  with maximal real part, and further, both quasistationary distributions 
exist(~41; the first is given by 

/ 

re~ = uj// ~ uk, j~ C (6) 
k c C  

and the second by 

r(/= UjVi//k~c. UkVk, jE C (7) 

If on the other hand C is infinite, as is the case when the reaction system in 
question is open, the situation is far more complicated. First there are no 
longer finitely many eigenvalues. Rather, they usually comprise a con- 
tinuum and positive eigensolutions can be obtained for at best a finite 
range [0, 2] of values of p.(16) Indeed, it may be that there are no positive 
eigensolutions whatsoever. The infinite case has been dealt with recently by 
Pollett. (17) In particular, sufficient conditions are obtained for the existence 
of quasistationary distributions and in the present context they amount to 
the following: if positive eigensolutions exist for some # ~> 0, and u and v 
are those solutions corresponding to the maximal value of #, then the con- 
dition that both ~k u~ and Xk u~v~ converge is sufficient to ensure that 
limits (3) and (4) exist and are given by (6) and (7). We note that the con- 
vergence of ~k  u~vk is necessary for (7) to be a proper probability dis- 
tribution over C. However, even if it is not satisfied, it is still possible for 
the stationary conditional quasistationary distribution to exist. (is) In this 
case the conditions for existence are less straightforward. One must check 
that the p-reverse q-matrix Q'=(q~k,j,k~C), defined over C by q~k= 
ux(qkj+ #6jk)/uj, is nonexplosive (for details see Pollett(17~). 

To illustrate our results, we calculated quasistationary distributions 
for various parameter values in each of the two reaction systems described. 
For brevity we shall deal here only with (1); for further illustration we refer 
the reader to Parsons. (~) It is clear that the only possible transitions for 
the process are upward jumps of size 1 and downward jumps of size 2. If 
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we assume that the reaction takes place in a container of unit volume, the 
transition rates are @.j+~ =ajkl, where a is the number of molecules 
present of species A, and qj, j_2=�89 2. The eigensolutions to (5) 
were calculated using NAG (19l software by taking successively larger 
northwest-corner truncations of the q-matrix restricted to C, until the dif- 
ference in the eigensolutions was adequately small (following Seneta, (2~ 
Section 7.3). For  the values a =  1000, kl =4 ,  and k2= 100 we found that 
the maximal value 2 for # was very close to zero. We also found that 
almost all of the entries in the right eigenvector were identical (from the 
ninth onward they were identical to six significant figures; the first eight 
elements were all lower than this common value by an amount of no more 
than 1.5 %). As a result, the two types of quasistationary distribution were 
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Fig. ]. Stationary conditional quasistationary distr ibution for example 1, with the parameter 
values as given in the text. ( 0 )  The exact distribution; ( - - )  the normal approximation. The 
mean and variance of the exact distribution are 39.5 and 60.3, respectively, while the 
corresponding values for the approximate distribution are 40 and 60, respectively. 
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almost identical, with the difference being the greatest (although still 
negligible for practical purposes) in the first few elements, where the doubly 
limiting conditional distribution assigns slightly lower probability. The dis- 
tribution evaluated using the current parameter values is illustrated in 
Fig. 1. 

The deterministic model for this example is defined by the differential 
equation 

dx /d t  = F ( x )  = a x k  1 - x2k2 

The stable deterministic steady state is the positive root x~t of the equation 
F(x~t)= 0, that is, x~t = k l a / k 2 ,  which, for the current parameter values, 
equals 40. Notice that, as expected, the mode of the distribution is very 
close to this value. 

On referring to the experience of other researchers (see, for example, 
Dunstan and Reynolds ~22)) it should be no surprise that the quasistationary 
distributions appear to be approximately normal. Indeed, it can be shown 
that the process itself can be accurately approximated (in Law) by an 
Ornstein-Uhlenbeck (OU) process. Barbour ~3~ presents results that show 
how closely and for how long we can expect this approximation to be good 
for the special case of univariate and bivariate processes. The parameters of 
the appropriate approximating OU process can be calculated using the 
work of Kurtz. It is easy to show (for details see Parsons (2~)) that the 
infinitesimal variance of the process is given by 

a _ _ G ( x s t ) / 2 H ( x ~ t )  

where G ( x )  = k l  a x  + 2k2 x2 and H ( x )  = k l  a -  2k2x.  On substitution we 
2 3Xst/2 , which is in close agreement with the exact find that a ~ =  

quasistationary distribution for this example and with the simulation 
results of Gillespie. r The OU approximation for the current parameter 
values is also shown in Fig. 1. It appears that the two distributions are very 
close indeed. 
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